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CHIRAL TOLUENE-2,a-SULTAM AUXILIARIES PREPARATION AND STRUCTURE OF 

ENANTIOMERICALLY PURE (R)- AND (S)-ETHYL-2.1’-SULTAM 1 

Wolfgang Oppolzer’, Martin Wills, Christian Starkemann and GCrald Bemardinelli 

Wpartement de Chimie Organique, UniversitC de Gen&ve, CH-1211 Genbve 4, Switzerland 

Abstra& Crystalline sultams (R)-2 or (S)-2 were selectively prepared from prochiral saccharine (2) in 
two steps (53% overall yield) via Ru-(R)-BINAP- or Ru-(S)-BINAP catalyzed asymmetric 
hydrogenation of imine 4. Alternatively, pure (R)-2 was synthesized (37% overall yield) from (R)-a- 
phenethylamine in 4-5 steps involving the o&o-sulfination 6 + z and the highly diastereoselective 
cyclization of sulfinic acid 1 to the sulfinamide 8. X-ray diffractlon analyses of sulfinamide 8 and 
sultam (R)-2 are presented. 

Bornane-10,2-sultam 1 and its antipode, accessible from inexpensive (+)- and (-)-camphorsulfonic acid in 

two simple operations, were introduced in 1984 and rank today among the most practical chiral auxiliaries (Scheme 

1). Various addition reactions to their N-enoyl derivatives 1, as well as reactions of their N,O-ketene acetal 

derivatives 11 with electrophiles proceed in high yield and with good to excellent r-face discrimination providing, 

after crystallization, -100% diastereomerically pure products. 2 

Scheme I 

h 

To gain a deeper understanding and an even broader scope of this stereoface-directing bias we designed 

related chiral sultam auxiliaries along the following guidelines: 

1) Simpler, but crystalline sultams containing a single stereogenic center instead of the bornane skeleton . 

The substituent attached to this center may be varied. 

2) No (acidic) proton at the carbon atom vicinal to the SO2 group. 

3) Easier NMR- and HPLC-analyses (aryl chromophore) of substrates and products. 

Methyl-substituted sultam 2 (Scheme 1) meets these criteria and we report here two different syntheses of its 

pure enantiomers. 

Preparation of (R)-2 and (S)-2 from Saccharine (a. 

The first approach provides enantiomerically pure sultams (R)-2 and (S)-2 from non-chiral 2 (Scheme 2). 
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Scheme 2 
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Addition of methyllithium (2.25 molequiv.) in Et20 to saccharine (1, THF, -78’C, 16h), aq. workup (sat. aq. 

NH4Cl) and crystallization (MeOH) furnished prochiral imine 4 3 (m.p. 218-219°C) in 73% yield. Remarkably, 4 

asymmetric hydrogenation of imine 4, catalyzed by Ru2Cl4[(R)-(+)-BINAPh(NEt3) 7 furnished, after 

crystallization, enantiomerically pure sultam (R)-2 * in 72% yield. g Analogous (S)-(-)-BINAP-directed 

hydrogenation of imine 4 afforded crystallized pure (S)-2 8 in 71% yield. 

Thus, starting from relatively inexpensive saccharine each antipodal sultam 2. was prepared on a multi-gram 

scale, via two simple steps, in -53% overall yield. The absolute configurations of products 2 were assigned via 

comparison of (R)-2 ([a~], mixed m.p.) with a sample obtained by the following, alternative route. 

Preparation of (R)-2 from (R)-a-pheaethyiamlne 5. 

Scheme 3 
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(a) NEt3 Me3CCOCl (1.1 equiv each), CH2Cl2. O’C. 16 h. (b) nBuLi (1 equiv), Et20, -78°C 0.5 h; then tBuLi 
(1.4 equi;), -78°C 4 h, + O’C over 20 min; O’C, 45 min; SO2 gas, -78’C. 0.5 h; then 4 WC, extraction with i) aq 
NaOH. ii) HCl. CH2Cl2. (c) SOCl2 (1.26 equiv), NEt3 (1 equiv), CH2Cl2, -78’C, O’C. 6 h; then NaH (2.6 equiv), 
RT, 16 h. (d) RuCl3 (0.0007 equiv), NaI04 (1.2 equiv), CC4/aq. MeCN, WC, 2 h. (e) LiAiHq (1.1 molequiv), 
THF, O’C, 1 h. (f) LiOH (2 equiv). 36% aq. H202 (4 equiv). aq. THF. RT, 1 h. 

Acylation of (R)-(+)-a (>97% e.e., Ffuku) with pivaloylchloride and crystallization (hexane/CH2Cl2) afforded 

amide 6 8 (94%. yield) in > 99% e.e.. &rho-deprotonation lo of fi using n-BuLi followed by t-BuLi and trapping 

of the di-lithiated intermediate with SO2. I1 afforded sulfinic acid z 8 (80% yield). Cyclization of 2 with 

SOCl2/NEt3 and NaH provided sulfinamide & 8 in 61 % yield (81% based on recovered z) and in 98.4% purity 

(GC). It thus appears that the cyclization z + J1 proceeded with L 98.5% diastereoselectivity. I2 A sample of 8, 

purified by FC and crystallization was analyzed by X-ray diffraction l3 which showed syn-disposed S-O and 

C(a)-CH3 bon&. Further structural features of & will be discussed below in comparison with those of sultam 2 

(Scheme 4). 
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Oxidation l4 8 + 2 followed by reductive deprotection of non-purified amide 2 8 and crystallization provided 

(i?)-sultam 2 8 (69% yield) in > 99 e.e. as determined by GC analysis of its (R)-a-methoxy-a-trifluoromethyI- 

phenylacetamide. ‘5 More directly, sultam (R)-2 was obtained in one operation from sulfinamide 8 (-100% yield 

with LiOH/H202 16). 

In summary, amine i. was converted into sultam 2 in 37% overall yield on a multigram scale without 

chromatography until the final step. Thus, the absolute configuration of sultam 2 follows unambiguously from that 

of educt 2. A further bonus is provided by the easy access to cyclic chiral sulfinamide 8 which opens additional 

perspectives in asymmetric synthesis. 

Structural Studies 

X-ray diffraction analysis of (R)-sultam 2 13 shows two crystallographically distinct conformers A and B in a 

1:l ratio (Scheme 4). 

Scheme 4 

00 
The observed position of the proton on the nitrogen atom showed the latter to be pyramidal in each case. l7 

This pyramid is higher in conformer A (h = 0.51 A) than in conformer B (h = 0.33 A) indicating a certain 

flexibility. Presumably for reasons of orbital overlap the “lone electron pair” in conformers A and B intersects the 

O-S-O angle 18 enforcing a s-cis disposition of N-H and C-CH3 bonds. Consequently, the pyramid is tilted in the 

ppposite sense as compared to N-acyl- and N,O-ketene acetal derivatives of sultam 2 lga and its analogues 1 and u 

l9b. In this context it is worth noting that the X-ray structure c of cyclic sulfinamide 8 reveals a flat (h = 0.000 

A) endocyclic nitrogen 7 attached to the (less electronegative?) S-O group. 

Conclusioo 

The two enantiomers 2 being readily accessible, the question is how they perform as chiral auxiliaries. This 

will be addressed in two following communications and further studies are currently underway. 
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